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Summary

Three-dimensional (2D) cell culture models have emerged as
the basis for improved cell systems biology. However, there is
a gap in robust computational techniques for segmentation
of these model systems that are imaged through confocal or
deconvolution microscopy. The main issues are the volume
of data, overlapping subcellular compartments and variation
in scale or size of subcompartments of interest, which lead to
ambiguities for quantitative analysis on a cell-by-cell basis.
We address these ambiguities through a series of geometric
operations that constrain the problem through iterative voting
and decomposition strategies. The main contributions of this
paper are to (i) extend the previously developed 2D radial
voting to an efficient 3D implementation, (ii) demonstrate
application of iterative radial voting at multiple subcellular
and molecular scales, and (iii) investigate application of the
proposed technology to two endpoints between 2D and 3D cell
culture models. These endpoints correspond to kinetics of DNA
damage repair as measured by phosphorylation of yH2AX,
and the loss of the membrane-bound E-cadherin protein as a
result of ionizing radiation.

Preliminary results indicate little difference in the kinetics
of the DNA damage protein between 2D and 3D cell culture
models; however, differences between membrane-bound E-
cadherin are more pronounced.

Introduction

Current models of high-content screening are based on 2D
cell culture models that are grown either on plastic or on
glass. Although such a model system may be appropriate
as an initial step towards discovery or for certain aspects of
biological studies, the knowledge may not be readily extensible
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to in vivo models. By contrast, animal studies are expensive
and time-consuming, and as a result cannot scale for large
studies that are necessary to build a space-time continuum
of responses in the presence of biological heterogeneity. An
intermediate step is 3D cell culture model systems, which
have been demonstrated to have some of the functionalities
of the in vivo models (Weaver et al., 1996). However,
such a model system introduces significant computational
challenges: (i) imaging is in 3D and not in the projection space;
(ii) subcellular compartments often overlap, and as a result,
delineation of each compartment becomes more challenging
computationally and (iii) variations in scale impose a more
complex segmentation problem at the object level. These
complexities are illustrated in a series of serial sections of
Fig. 1, where the 3D cell culture model, known as a
mammosphere, is composed of epithelial cells, which are
polarized and form a hollow sphere. This polarized architecture
is necessary for its functional behaviour such as production
of milk in culture. It is important to quantify morphology and
localization on a cell-by-cell basis in these assays. Therefore,
segmentation of subcellular compartments is essential for
detailed quantitative analysis.

Our basic segmentation strategy is to leverage saliency,
which is a well-known concept in the computer vision. In
the case of data, shown in Fig. 1, saliency corresponds
to approximate radial symmetry as all nuclei are blob-
like and compact. Radial symmetry is a special class of
symmetry, which can be visualized at multiple scales of nuclear
morphology and nuclear foci (e.g. PML bodies Stuurman et al.,
1990). Therefore, robust and efficient detection of inexact
radial symmetries facilitates the semantic representation of
images for summarization and interpretation. Yet, the notion
of radial symmetry is used in a weak sense because the basic
geometry can deviate in scale, aspect ratio and convexity.

In this paper, we present a geometric-based method for
delineating 3D cell culture models for structural as well as
functional analysis. The novelty of the proposed method is in
specific geometric steps, shown in Fig. 2, which are designed
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Fig. 1. Slices of a 3D mammosphere along the Z-direction indicate that in some planes subcellular regions overlap; however, a weak convexity constraint
and radial symmetry can provide the necessary bound for delineating individual compartments. The resolution along the XY-axis is eight times of the

Z-axis.

to bound the solution through seeding and subsequent
partitioning. At the coarse scale, estimation of the nuclear
centroid in a mammoshpere enables partitioning of touching
nuclei, which is performed by finding planes that best separate
touching cells. The actual methodology is based on the Radon
transform. The Radon transform is the integral transform in
an N-dimensional space, whose value at each point is the
integral over the (N — 1)-dimensional manifold orthogonal

Nucleus

Foci

to the vector represented by that point (Deans, 1983). At
the fine scale, localization of punctate signals (e.g. small
macromolecular structures) within each nucleus enables an
accurate representation of each event. The small regions of
the target protein (e.g. 1-2 um for the DNA repair protein)
are first detected through radial voting and then segmented
by representing the immediate local region as a mixture of
two Gaussians whose parameters are estimated through the
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Fig. 2. Steps in quantitative analysis of mammosphere architecture and different endpoints. The first step is to nuclear segmentation, which provides
context for either nuclear-bound foci analysis or cell-surface bound E-cadherin (painted as red) analysis. It is important to note that radial voting is applied
at two scales to detect nuclei as well small macromolecule objects such as foci (painted as green).
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expectation—-maximization algorithm. At both scales, seeding
(e.g. approximating centres of mass) is based on iterative
spatial voting, and is implemented through the refinement of
specifically tuned voting kernels (Parvin et al., 2007), which
is extended to 3D in this paper.

Spatial voting has been studied for at least four decades.
A classic example of spatial voting is the Hough transform
for detecting parametric objects (e.g. circle, ellipse, line). The
Hough transform has also been extended into the generalized
Hough transform (Duda & Hart, 1972), which is compute
and memory intensive. Our approach defines a series of
kernels that can vote iteratively along the radial or tangential
edge directions. These kernels are designed to accentuate
a specific saliency (e.g. centre of mass, linear structures).
Voting along the radial direction leads to estimation of the
centre of mass, whereas voting along the tangential direction
enforces continuity. However, as it is in the case with Hough
for detecting circles, voting can be very noisy. However,
we have shown that through iterative voting (Parvin et al.,
2007), noisy inference of spatial clusters can be reduced and
eliminated. Therefore, by iterative refinement ofkernel domain
and orientation, spatial clustering is significantly improved.

Our contributions are two folds. First, we will present
an efficient implementation of 3D voting for seed detection
and apply to real biological endpoints for segmentation and
quantitative analysis. Here, endpoint refers to an observed
or measured outcome to indicate or reflect the effect of the
experiment. Secondly, we will present two endpoints that are
differentially expressed between 2D and 3D cell culture models.
One endpoint is nuclear-bound, whereas the second one
is cell-membrane-bound providing an excellent contrast for
differential analysis. The details of membrane-bound endpoint
has been extensively described in our previous papers (Chang
etal., 2007; Han et al., 2010), and is primarily used as a point
of discussion in this paper.

The organization of this paper is as follows. Section 2
provides a brief review of the previous research. Section
3 describes geometric steps (e.g. voting, coarse tessellation
and Radon transform) and the detailed implementation.
Section 4 discusses the experimental results. Section 5
concludes the paper.

Previous research

A critical component ofimage analysis is segmentation, which
provides context for multidimensional profiling (Carpenter
etal., 2006). The current practice is to label the nuclear region
with a DNA stain to provide context for detailed morphological
analysis and further protein localization. Although most of the
current computational models have been developed for 2D cell
culture models, they should be extensible to 3D models as well.
The key concepts have been watershed (Chawala et al., 2004),
geometric method (Raman et al., 2007; Wen et al., 2009)
and active surface models for segmentation of nuclear regions
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(Sarti et al., 2000; Padfield et al., 2009; Srinivasa et al., 2009).
A recent comparison of traditional nuclear segmentation
method has been addressed in (Coelho et al., 2009), where
the main issue has been to delineate touching nuclei and to
enable measurements on a cell-by-cell basis. Several flavours
of nuclear segmentation are summarized later.

In Byun et al. (2006), detection of nuclear regions is
modelled through Laplacian of Gaussian (LoG). The response
from the LoG filter is then analysed for peak detection
corresponding to the centre of mass for each nucleus.
The method is noniterative, incorporates a fixed filter size,
and is appropriate when nuclear morphology is relatively
homogeneous. This is essentially a detection technique,
however, it does provide some constraints to bound the
segmentation problem. In Lin et al. (2003), segmentation and
classification are tightly coupled for a model-based framework.
The process is initiated from a watershed-based method,
which partitions the image and potentially fragments each
nucleus. Through an efficient hierarchical strategy, two or
more fragments are merged together to form a candidate. Each
candidateis then scored to guide the merging process. The final
blob is also classified against one of the models to reveal the
nuclear type. However, the segmentation results are sensitive
to initial conditions for the generation of ‘merge tree’. In Li
etal. (2007), amethod based on regularization of the gradient
vector flow is proposed. This method is roughly an extension
of the regularized centroid transform (Yang & Parvin, 2003)
to 3D data. The basic idea is to apply the gradient flow tracking
algorithm to label each pixel with a converged sink position
that corresponds to cell centroid. The method is iterative,
compute intensive and has been applied to low-resolution
fluorescence images. The main limitation of this method are
that (i) multiple sinks may be detected for elongated nuclei
and (ii) it assumes that the nuclear intensity is homogeneous
and does not contain obvious inner structures. In Nath et al.
(2006), an efficient implementation of level set method (Chan
& Vese, 2001) is proposed by reducing complexities associated
with the original multiphase implementation (Vese & Chan,
2002). They leverage the four-colour property of the spatial
organization of different objects to reduce the number of
evolving fronts. The net result is an efficient implementation,
by reducing the number of coupling terms, which has been
applied to tracking cellsin wound-healing assays. These assays
are imaged through phase contrast microscopy, however,
initialization can be a potential problem for fixed cells with
overlapping compartments. Finally, a number of researchers
have focused on phenotypic subtyping and modelling (Jackson
etal., 2009; Yin et al., 2009; Coelho et al., 2010).

To our knowledge, the literature on segmentation of
mammosphere structures is limited to a system, where
segmentation is performed in 2D followed by merging
segmented results in a 3D stack (Knowles et al., 2006). This
particular assay produces nuclear regions that tend to be
separable in 2D (e.g. little overlap) while maintaining a similar
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scale in nuclear size. Heterogeneity in these assays originates
from the cell line and specific treatments that they have
undergone. Iterative voting tends to be more tolerant to scale.
As aresult, it is an excellent low level modules for identifying
pertinent seeds.

Approach

In this section, we will address the details for segmentation
of (i) nuclei and (ii) nuclear-bound macromolecules, where
both tasks utilize the same computational strategy. Details of
membrane-bound signal are only presented at high level and
as a point of discussion in the next section.

Initially, the 3D stack of data is normalized for an isotropic
representation so that X, Y and Z have similar physical
dimensions. In the nuclear channel, seeds are detected using
radial voting and the image is adaptively thresholded using
the Otsu’s method (Otsu, 1979) in parallel. Each clump of cells
are then decomposed at two levels using Radon transform
and Voronoi tessellation. Segmentation of nuclear regions
provides context for delineation of membrane-bound macro-
molecules (e.g. PML bodies). Accordingly, seeds are detected
with a different parameter settings and each foci is segmented
by modelling foreground and background as a mixture of two
Gaussians.

Nuclear seed estimation with iterative radial voting

The basic concept is that important information are visualized
along the edges, and by projecting the gradient information
with specialized kernels, seeds corresponding to the centre of
mass can be detected. This is an iterative method, and the
kernel topography is smooth and becomes more focused and
dense at each iteration. The method extends our previous
effort, which restrict voting to a 2D plane (Parvin et al.,
2007).Let I(x) be the original image, where the domain points
x = (x, y, z) are 3D image coordinates. Let a(x) be the voting
direction at each 3D image point, where a(x) is a unit vector
that varies with the image location. Let {rmin, rmax} be the
radialrange and A betheangularrange. Let V (X; Fmin, "max> 2)
be the 3D vote image, dependent on the radial and angular
ranges and have the same dimensions as the original
3D image. Let v(X; Fmin, 'max, A) be the local voting volume,
defined at each image point x and dependent on the radial and

(a) (b) (c) (d) (e}

angular ranges, defined by

V(X; Fmins Fmax> A) = {X £ p|rmin < 1Pl < Fmax.

and 0 < Z{p, a(x)} < A}. (1)

Finally, let K(x;0,a,v) be a 3D Gaussian kernel (e.g.
g(x, y,z) = (1/3/270)e T +2)/20"  with  variance o2,
masked by the local voting volume v(X; rmin, 'max, A)), and
oriented in the voting direction a(x). Figure 3 shows a subset of
voting kernels that vary in topography, scale and orientation.
For simplicity, only the 2D intersection along the axis of the
cone kernel is shown in this figure.
The iterative voting algorithm is outlined later.

Iterative Voting

(1) Initialize the parameters: Initialize ryin, 'max, Amax and a
sequence Apax = Ay > Ay_1 > -+ > Ag = 0,where N
is the number of iterations. Set n = N and the vote
image V(X; 'min, 'max> An+1) = 0. Also fix a low gradient
threshold, I'y, and a kernel variance, o, depending on the
expected scale of salient features.

(2) Initialize the saliency feature image: Define the feature image
F(x) to be the local external force at each pixel of the
original image. The external force is often set to the
gradient magnitude or maximum curvature, depending
upon the type of saliency and the presence of local feature
boundaries.

(3) Initialize the voting direction and magnitude: Compute the
image gradient, VI(x), and its magnitude, ||VI(x)||.
Define a pixel subset S := {(x)| ||VI(x)|| > I'y}. For each
grid point (x) € S, define the voting direction to be

VI(x)

) = =T

(4) Compute the votes: For each pixel x € S, update the vote
image as follows:

V(X: Fmins Fmaxs An) i= V(X F'min, Fmaxo ArH—l)

LY

UEV(X;Fmin,'max> An)

F(x+u)K(u;o,a, v).

(5) Update the voting direction: For each grid point

x € S, revise the voting direction. Let wu*=
aArg MaXuep(x:rmin: Fmax. An) V(U; I'min, 'max, An)- Let dx =
u* —x, and a(x) = ”g*”.

(6) Refine the angular range: Let n := n — 1, and repeat steps
4—6 untiln = 0.

Fig. 3. Kernel topography in 2D: (a—e) Evolving kernel for the detection of radial symmetry (shown at a fixed orientation) has a trapezoidal active area

with Gaussian distribution along both the radial and tangent axes.

© 2010 The Authors
Journal of Microscopy © 2010 The Royal Microscopical Society, 241, 315-326



MULTISCALE ITERATIVE VOTING FOR 3D CELL CULTURE MODELS 319

(7) Determine the points of saliency: Define the centres of mass
or completed boundaries by thresholding the vote image:

C= {X|V(X, I'min, "'max, AO) > Ty}

The voting algorithm contains a number of parameters that
are defined as follows:
® Voting volume: For radial voting, the algorithm can be tuned
to look exclusively for dark or bright objects, or both, by
selecting the signs in Eq. (1), which dictate whether the
kernels are oriented in the direction of positive or of negative
gradient. For bright objects v(X; Fmin, 'max, A) is set to

U+(X; Fmins Fmaxs A) = {X + P|rmin < 1Pl < Fmax,

and 0 < /{p, a(x)} < A}.
For dark objects, v(X; 'min, "max, A) is set to

V(X Fmins Tmax> A) = {X = Plrmin < Pl < Fmax.

and O < Z{p, a(x)} < A}.

® Voting magnitudes: The voting profile contributed by each
pixel is a function of its strength (e.g. gradient magnitude).
Weak features can be thresholded with a small value, I'g,
to improve computational efficiency; however, this is not a
necessary step. It is the edge magnitude and organization
of edges that contribute to the voting landscape, thus
suppressing random noise even further.

® Radial and angular ranges: The bounds ruy, and rpay
on the radial range, and the maximum angular
range Apna.x are preselected given the shapes of
the objects to be detected. For example, to detect
circles, we can set rppn =rmax and Ap.e =0, and
to detect ellipsoids of the form ;‘;—;—f- I’]’—Z—i—f—j =1, we
set rmin = min(a, b, ¢), rmax = max(a, b, c¢) and Apax =

2_p2 X 2_p2 K 202 K .
max{arcsin '22+ZZ', arcsin ‘22+22| ,arcsin 5=y which is

2
the maximum angle between the radialhaJIrlLd the gradient
(normal) vectors of the ellipsoids. Although these are ideal
cases, tolerances are added for real-world images.

® Step-size in the evolution of kernel shape: An important value
in the protocol is the step-size with which the voting volume
is iteratively reduced. If the step-size is too large, then the
centres of mass or boundaries will be fragmented, and,
if it is too small, then the computational cost will rise.
The monotonically decreasing sequence, Apux = Ay >
AN_1 > --- > Ag = 0, controlsthe convergence rate of the
algorithm. Each time the voting direction is updated, the
angular range is decreased to shrink the voting volume. In
our system, the interval [0, Ap.x] is equally partitioned,
and the maximum value is set interactively. For an object
demonstrating simple circular geometry, a few iterations
(e.g. N = 4) is adequate. A higher value is necessary for
noisy images with overlapping objects.

® Threshold of output image: The final vote image is always
ranked. In some cases, a threshold I', may be set to select
the most prominent set of hypotheses.

© 2010 The Authors
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To analyse the computational complexity of the iterative
voting, let us examine the voting volume defined by Eq. (1).
The cost of generating such a voting volume is very high. To
solve this problem, a voting direction can be quantized into
angular bins, and a template voting area may be generated
and stored for each angular bin. Compared to the voting
operation, the cost of precomputing and searching these
templates can be ignored. The computational complexity
of performing a single voting operation at iteration n is
O(K(r2., —r2,,)A,), where K is the number of pixels in
the original image. If we select the sequence of angular
ranges to be A, = Apnaxi/N, where N is the number of
iterations, then the total complexity of the voting operations
is Zfl\':() K(rr%nax - rr%ﬂn)AmaXn/N = O(KN)AmaX(rrznax - rl%lin .
Essentially, the complexity is determined by the image size and
the predetermined radial and angular ranges. If the objects are
known to be nearly round, then A, and réax - ”énn can be
set to be quite small, and O(KN)AmaX(rrzmle — rfmn) may be
reduced to as low as O (KN).

To illustrate the behaviour of iterative voting, Fig. 4 shows
intermediate steps that lead towards final results for a 3D
mammosphere. The voting landscape corresponds to the
spatial clustering that is initially diffuse and is subsequently
refined and focused into distinct regions. Notice that the
proposed voting algorithm successfully detected the seeds for
3D overlapping objects with various size. An example of the
3D voting result is shown in Fig. 5, where each nucleus in a
mammosphere has been detected.

Iterative voting shares a common thread with optimization
problems in computer vision, which rely on establishing
proper geometric constraints and then regularizing the
solution. In this case, geometric constraints are expressed
in the shape of the voting kernel and the regularization is
embedded in the smoothness of kernel. The iterative process
leads the solution into its local minima by searching for the
maximum response in a local neighbourhood. The iterative
nature of scalar voting reduces the possibility of generating
multiple seeds within the same region, provides a tight
geometric constraint on the shape of each subcompartment,
and improves the overall efficiency of the computational
pipeline.

Partitioning of a mammosphere from seeded nuclei

The process is initiated by a coarse segmentation of nuclei
with a 3D Voronoi tessellation. First, initial tessellation
facilitates identification of a local neighbourhood where each
nuclear region is contained within its own space. As a result,
this provides the possibility of partitioning touching nuclei
through the Radon transform, which has to be performed on
a neighbourhood which contains one pair of touching nuclei
only. For example, the Radon transform will fail in partitioning
two touching nuclei when the local neighbourhood contains
the third nucleus, as shown in Fig. 6 from real data. Secondly,



320 J. HAN ET AL.

Original 1st iteration

2nd iteration 3rd iteration

Fig. 4. Detection of radial symmetries for a real 3D image with multiple overlapping objects where voting landscapes are shown from different views.

First row — top view; second row — side view; third row — 3D view.

Fig. 5. Voted results projected on the multicellular system of Fig. 4.

initial tessellation improves computational performance for
each mammosphere prior to Radon transform. This feature
has to do with the fact that not all adjacent nuclei are
connected and that there is a clear empty space between
them. Under this condition, there is no need to refine the
segmentation further.

The details of Radon transform are as follows; however,
for simplicity the 2D version is described first. The Radon
transform represents an image as a collection of projections in
a function domain f(x, y) along various lines defined by the
shortest distance p from the origin and the angle of inclination

0 with the y axis
R(p,0) = // f(x, y)d(p — xcos® — ysinH)dxdy.

(2)
Properties of the Radon transform enable segmentation of
nearby touching objects. For example, two adjacent objects,
represented by circles in Fig. 7(a), and their corresponding
Radon transform shown in Fig. 7(b), have a local minimum
that is located at p = 17 and & = 135°. This local minimum
corresponds to the integration over the line that separates the
two objects with the smallest cross section.

Similarly, the 3D Radon transform represents a 3D volume
as a collection of projections in a function domain f(x, y, z)
along various planes defined by the shortest distance p from
the origin, the angle of azimuth ¢ around the z axis and the
angle of elevation 6 around the y axis

R(p, ¢,0) = /// f(x,y,2)8(p — xcos¢cosb
— ysin¢ cos O — zsinf)dxdydz.

The Radon transform is a separable transform and its
implementation is shown in Fig. 8. A fast method for
computing 3D radon transform via a direct Fourier method
can be found in (Lanzavecchia & Luigi Bellon, 1998). Given
a local cube containing two nearby adjacent cells, each of
which is bounded by a seed, the optimal plane separating
these two cells should be located between the two seeds and
have the smallest cross section. The local minimum in the
3D Radon transform corresponds to the integration over the
optimal plane in the local cube. The final segmentation of

© 2010 The Authors
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Fig. 6. A segmented visualization of the nuclear configuration where tessellation (tessellation is not shown) enforces locality: (a) the blue nucleus resides
at the fold between the green and black nuclei (and without an initial tessellation subsequent Radon transform refinement will fail) and (b) empty spaces
between black and blue nuclei eliminate the need for Radon transform refinement.

a mammosphere for the stack shown in Fig. 4 is shown in
Fig. 9.

Foci seed estimation with iterative voting

Nuclear segmentation can provide context for quantitative
assessment of protein signal, which can be punctate and
small. An example of such small signals is the DNA repair
protein shown in Fig. 10 shows a slice from a mammosphere,
indicating nuclear region and corresponding foci that are
formed by phosphorylation of histone yH2AX following
ionizing radiation. Following nuclear segmentation, a foci
image is created through maximum project of foci channel
within each nucleus. As a result, detection of foci is performed
in 2D because accidental alignment of two foci in a Z-stack is
very rare.

At this scale, foci can also be detected by radial voting
with smaller parameter settings. This kind of functionality
is often referred to as an interest point operator, and there

o
A boundary

(a)

Fig. 7. An example of 2D object segmentation using the Radon transform: (a) synthetic object composed of two circles and (b) corresponding Radon

transform with local minimum at p = 17 and 6 = 135°.
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Fig. 8. The Radon transform is separable, and the 3D Radon transform
can be decomposed into a series of 2D Radon transforms.

is a large literature on this topic, but iterative voting is
robust and can distinguish overlapping events. However,
segmentation of these punctate events can be complicated
as a result of variation in (1) background intensity, (2)
foreground intensity, (3) sample preparation, (4) instrument
configuration and (5) nearby signals. Our approach is based
on (1) establishing a local neighbourhood, bounded by the
maximum size of foci, and (2) modelling the local intensity
distribution as a mixture of two Gaussian, whose latent
variables are estimated using the expectation—-maximization
method (Bilmes, 1997).

0 50 100 150
a(%)

(b)
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Fig. 9. Final segmentation of a mammosphere for the stack shown in
Fig. 4.

Quantification of the Membrane-bound E-cadherin

In this section, we briefly summarize a computational method
for quantifying membrane-bound macromolecules such as
E-cadherin, where the details have already been published
(Chang et al., 2007; Han et al., 2010). The significance of this
endpoint is that E-cadherin regulates cell—cell interactions and
physical properties of tissues, and loss E-cadherin has been
associated with (i) increased motility, (ii) cancer progression

and metastasis and (iii) increased resistance to cell death
(Cavallaro & Christofori, 2004). The main rationale is a
case study for examining membrane- and nuclear-bound
endpoints, in 2D and 3D cell culture models, as a result
of ionizing radiation. Our published approach to delineate
and quantify E-cadherin signal has three steps: (i) nuclei are
segmented to provide context and initialization for subsequent
steps; (ii) membrane-bound E-cadherin is enhanced and
regularized through iterative tangential voting (Chang et al.,
2007) and (iii) evolving fronts, originating from each nucleus,
are attracted to the regularized membrane signal (Chang &
Parvin, 2010; Han et al., 2010). An example for the effect
of tangential voting for a 3D cell culture model is shown in
Fig. 11. Tangential voting fills gaps and regularizes the signal.

Experimental results

The primary contribution of this paper is in the development
ofthe 3D radial voting and developing a system for delineating
individual nucleus in a mammosphere. The secondary
contribution isits application to real biological problems. First,
we present validation of the computational pipeline. Secondly,
we apply the method to several data sets.

Validation of seed detection with synthetic data

A synthetic data set has been generated to evaluate the
proposed approach. This data set contains 30 image stacks
with 350 pixels in X, Y and Z dimensions, respectively. Each

(@) (b) (c)

Fig. 10. A cross section of the 3D cell culture model: (a) DAPI stained nuclear regions, (b) foci formation visualized by phosphorylation of histone yH2AX
as a result of ionizing radiation and (c) composite image. By counting average number of foci per cell, kinetics of DNA repair can be quantified.

(b) (c)

Fig. 11. Localization of E-cadherin in a multicellular system: (a) a slice of the original image of the mammosphere (3D cell culture model), (b) initial

voting landscape and (c) voted results corresponding to the membrane proteins along the points of maximum negative curvature.

© 2010 The Authors
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Table 1. Nuclear under-detection error (percentage of undetected nuclei) on synthetic data at different noise levels (o).

Noise level (o)

3-10 rmax Amax 0 100 200 300 400 500 600 700
50 20 0 0 0 0 0.19% 0 0.19% 0
50 25 0.19% 0 0 0 0 0 0 0
50 30 0 0 0 0 0 0 0 0
60 20 0 0 0 0 0 0 0 0
60 25 0 0.19% 0 0 0 0 0 0
60 30 0 0 0 0 0 0 0 0
70 20 0.74% 0.56% 1.30% 0.74% 0 0 0 0
70 25 1.85% 0.74% 0.74% 0.37% 0 0 0 0
70 30 0.74% 0.93% 0.74% 0.56% 0 0 0 0
80 20 0.74% 0.74% 0.93% 0.93% 0.19% 0 0.37% 0
80 25 1.67% 1.67% 2.22% 1.48% 0 0 0 0
80 30 1.48% 0.93% 1.30% 0.74% 0 0 0 0

image stack contains 18 cells whose centres are located on
the surface of a sphere with a radius of 100 pixels. This
sphere corresponds to an idealized and normal representation
of mammosphere. The centroid of each cell is set at 100,
(0,0), (—100,0,0), (0,100,0), (0,—100,0), (0,0,100), (0,0,
-100), (71,71,0), (-71,71,0), (71,—71,0), (—71,—71,0),
(71,0,71),(-71,0,71),(71,0,—71),(-71,0,—71),(0,71,71),
(0,—71,71), (0,71,-71), (0,—71,—71), however, these
centroids are uniformly perturbed, with £5 pixels, along
each axis. The principal axes, orientation and intensity of
each cell are randomly generated from to create varying
amounts of overlap between neighbouring cells and diversity
in staining (or cell cycle state). More specifically, the principal
axesare generated from a uniform distribution between 60 and
100 pixels, foreground and background intensities are set at

1200 and 600 and intensity is corrupted by varying amount of
Gaussian noise N(0, o). The iterative radial voting algorithm
is then applied to estimate the centroid of each nucleus in
the 3D image stack. A subset of the voting parameters, such
as 'min = 1 and I'y = 50, have minimal effect on the final
outcome, and, therefore, are fixed in this experiment. We
evaluate the nuclear detection performance by varying rpay,
Amax and added noise (o). The performance of the nuclear
seed detection is evaluated based on two errors: percentage of
missing seeds and percentage of extra seeds. Table 1 shows the
percentage of missing seeds on synthetic data at different levels
of added noise, which indicates low error rate, insensitivity to
parameters rpa.x and Ap.y, and the noise level o. Table 2
shows the result of the second experiment on quantifying
detection of extraneous seeds on the same data set. Again, we

Table 2. Nuclear over-detection error (percentage of multidetected nuclei) on synthetic data at different noise levels (o).

Noise level o

3-10 rmax Amax 0 100 200 300 400 500 600 700
50 20 0.74% 0.56% 0.56% 0.37% 0.19% 0.37% 0.93% 2.78%
50 25 0.56% 0.56% 0.56% 0.37% 0.19% 1.30% 2.59% 7.96%
50 30 0.56% 0.56% 0.37% 0.37% 0.74% 3.15% 4.63% 7.78%
60 20 0 0 0 0 0 0 0 0.19%
60 25 0 0 0 0 0 0 0 0.37%
60 30 0 0 0 0 0 0.19% 0.56% 1.11%
70 20 0 0 0 0 0 0 0 0

70 25 0 0 0 0 0 0 0 0.19%
70 30 0 0 0 0 0 0 0 2.04%
80 20 0 0 0 0 0 0 0.19% 0.37%
80 25 0 0 0 0 0 0 0 0

80 30 0 0 0 0 0 0 0 0.19%
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show low error rate, and insensitivity to parameter setting and
noise.

Validation of seed detections with real data

Although synthetic data validate algorithms and their
implementation, they are no substitute for real data. Our
computational method has already been validated for spot
detection for 2D cell culture models (Raman et al., 2007).
Because foci are counted in 2D through maximum intensity
projection within each segmented nucleus, no addition
validation is needed. Therefore, with focus on the quality of
seed detection in 3D for nuclear segmentation, which hasbeen
tested on a data set of 144 colonies, with an average of 20
cells per colony. Each image has 500 x 500 x 35 pixels, and
the resolutions along the x, y and z directions are 0.15,0.15
and 0.75 pum, respectively. Voting parameters for nuclear
seed estimation are set as follows: rmin = 1, Fmax=60, Amax =
20 and I'y = 50. With the exception of Radon transform
(implemented in Matlab and then compiled to C), the entire
system is implemented in C++, and the average processing
time for one colony data is 12 min on a Linux platform
with a 3.GHz CPU, where each colony consists of two
stacks of data corresponding to (i) a nuclear channel and (ii)
phosphorylation of the DNA repair protein yH2AX. A sample
result is shown in Fig. 12.

In this data set, nuclear seeds were first estimated
through iterative radial voting, however, approximately 4%
of total nuclei did not register correct seeds (error occur
in approximately 33% of total colonies), which indicates
a detection error rate of 4%. This is presumably due to
the abnormal scale and shape of the nuclear volume,
and the exact conditions of the nuclei are: (1) Low
contrast between overlapping nuclei: An absence of gradient
information between overlapping nuclei, coupled with their
accidental morphological properties, provides ambiguous
voting evidence that produces one fixed point instead of
two. (2) Morphological abnormality: Often, a single nucleus
has an abnormal elongated shape, and radial voting merges
multiple seed points into a single fixed point. This condition
is highly correlated with the previous case. (3) Incomplete
information: Thisis due to an imaging problem, where imaging
is incomplete and part of the nucleus is missing from the
volumetric image, as shown in Fig. 6. (4) Low sampling
resolution in z axis: The current interpolation algorithm is
linear for making a volumetric stack homogeneous in its x,
y and the z dimensions. Linear interpolation smoothes the
gradient in the z direction, and reduces the contribution of the
corresponding gradient information. An improved model will
use some form of spline interpolation.

Finally, the error rate for partitioning touching nuclei
is approximately 2% (error occur in 9% of total colonies).
These errors occur when the optimum plane for separating
two nuclei is not the desired plane for partitioning two

#  original

segmentation # original segmentation

23

27

M

) @ L7
A e

Fig. 12. Segmentation results shown on a subset of slices for an image
stack.

neighbouring nuclei. The notion of desired planes has to do
with those planes that bisect neighbouring nuclei along points
of maximum curvature. In this case, the error rate can be
reduced through improved seed estimation.

Case studies for comparison between 2D and 3D cell
culture models

We are interested to capture the differences between the 2D
and 3D cell culture models at two diverse endpoints under
ionizing radiation. Having validated nuclear segmentation,
spot counting and building upon on our previous research,
we have generated two data sets of phosphorylation histone
H2AX (yH2AX) and membrane-bound E-cadherin protein.
For both endpoints, we use the same cell line and source of
ionizing y radiation.

(1) In the first experiment, phosphorylation of histone
H2AX occurs at sites of DNA double strand breaks (Rogakou
et al., 1998) following ionizing radiation. The y-H2AX foci

© 2010 The Authors
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Fig. 13. Kinetics of average number of foci per cell in 2D and 3D cell culture models indicates little difference in the repair efficiency.

formation is considered to be a sensitive biological marker for
measuring DNA double strand break induction and repair.
We have quantified foci formation at 20 min after exposure
to low doses of y-rays and studied the dephosphorylation of
y-H2AX due to repair of double-strand breaks for up to 72 h
in 2D or 48 h in 3D cultures, respectively. We have used
our previously published method (Raman et al., 2007) to
quantify the y-H2AX foci formation in 2D cultures. Figure
13 shows preliminary results for noncycling MCF10A cells
under different culture conditions (2D or 3D) after exposure
to y-rays. The data shows that the average number of foci
per cell, exposed to y-rays, returns to the background levels
within 24 h. In other words, differences between the 2D and
3D culture models are marginal. This result is also in good
agreement with pulse field gel electrophoresis (PFGE) data at
higher doses (Rydberg et al., 2005).

(2) In the second experiment, involving membrane-bound
E-cadherin protein, a total of 118 images were collected for
cells grown in 2D and 3D cell culture models and exposed to
y radiation. The data set also includes appropriate control for
each assay. We have used our previously published method
(Han et al., 2010) to quantify E-cadherin signals for each
experiment, and the resultisreported in Fig. 14, which indicate
that E-cadherin is better preserved in the 3D model systems
under identical treatment conditions.

The significance of the earlier two studies is a preliminary
resultindicating that the endpoints closer to the cellmembrane
are potentially better preserved in 3D cell culture models as a
result of ionizing radiation. Thus, providing further evidence
for the utilities of these systems.

Conclusion

This paper presented a series of geometric steps for quantitative
analysis of multiple endpoints for 3D cell culture models.
The first step estimates an approximation to centre of mass
for each nucleus and then partitions a clump of nuclei
along minimal intersecting surfaces. Approximate solution
to the centre of mass is realized through iterative spatial
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Fig. 14. E-cadherin is better preserved in 3D than in 2D under identical
set of treatment.

voting, which is tolerant of variation in shape morphologies,
perceptual surfaces, noise and overlapping compartments.
These centres of mass are then used to partition a clump of
cells along minimal intersecting surfaces that are estimated
by Radon transform. The technique has been tested on
144 colonies and their corresponding 3D volumes, and
the error rate is fully characterized. Segmentation of the
mammosphere provides context for quantifying nuclear-
bound macromolecules, where we showed the reuse of
iterative voting at a smaller scale. We have applied our
computational pipeline to quantify phosphorylation of histone
H2AX (yH2AX) in the human breast epithelial cell line
MCF10A asaresult ofionizing radiation. Comparison between
2D and 3D cell culture models reveal little difference between
the two model. This result correlates with the existing
literature. However, another endpoint indicated a substantial
difference between the two model systems. We hypothesize
that these differences are location dependent, and continues
to be the subject of our current research.
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